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PREFACE.
This final report for the Air Force office of Scientific

Research (research grant AFOSR 01-5-28225) entitled "Theoretical
Investigations of Chaotic Dynamics" of the period December 1, 1988
- November 30, 1990 consists of two parts. In part I, an overview
of the accomplished scientific activities is presented, and part
II is devoted to abstracts of all papers that were (almost)
finished in the actual funding period. Some papers in part I refer
to the incorrect (ouitdated) AFOSR grant 81-0217, which was a
predecessor of the current grant.

Note: Z.P. You received his Ph.D. degree in Mathematics in
August 1991 from the University of Maryland with J.A. Yorke as
dissertation advisor.

PART I.
ACTIVITIES

1. HOW CHAOS DEVELOPS AS A PARAMETER IS VARIED

One of the outstanding problems of chaot-c dynamics has been to

show that chaos develops monotonically as the parameter is varied,

for some systems. Results along this line have been very few. An

overview of these results has been given in the proposal for this

funding period. Kan and Yorke have discovered results in two

dimensions which clearly indicate the situation is far worse than

previously believed. Their results require some mild nondegeneracy

conditions which shall not be spelled out in detail here. Their

results are for diffeomorphisms that depend on a parameter. They

show that monotonicity never occurs in two dimensions as the

parameter varies, except in the most trivial situations. In [KY]

these results have been written for a special prototype example

which seems quite typical. This example has nice simple choices of

coordinates, and analysis is facilitated. Establishment of the

full result was much more difficult and the analysis has been

carried out in [KKY].

[KY] I. Kan and J.A. Yorke. Antimonotonicity: concurrent
creation and annihilation of periodic orbits. Bulletin (New
Series) Amer. Math. Soc. 23 (1990), 469-476.

[KKY] I. Kan, H. Kogak, and J.A. Yorke. Antimonotonicity:
concurrent creation and annihilation of periodic orbits. Preprint
University of Maryland, August 1990. To appear in Annals of Math.
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2. NUMERICAL METHODS FOR CHAOTIC DYNAMICAL SYSTEMS

2A. STRADDLE ORBITS. Examples are common in dynamical systems

in which there are regions containing chaotic sets that are not

attractors. If almost every trajectory eventually leaves some

region, but the region contains a chaotic set, then typical

trajectories will behave chaotically for a while and then will

leave the region, and so we will observe chaotic transients. Such

regions are called transient regions. Systems with horseshoes have

such regions as do systems with fractal basin boundaries, as does

the H6non map for suitably chosen parameters. In [NYI] we

presented a numerical method for finding trajectories which will

stay in such transient regions for arbitrarily long periods of

time, and it leads to a "saddle straddle trajectory". Furthermore,

a refined procedure for finding accessible trajectories on the

chaotic saddle has also been discussed. In [NY2] these numerical

methods are shown to be valid for hyperbolic systems. The examples

in [NYI] illustrate that the procedure works well on computers for

long periods of time, even when the system lacks hyperbolicity.

In dynamical systems examples are common in which two or more

attractors coexist, and in such cases the basin boundary is

nonempty. When the basin boundary is fractal (that is, it has a

Cantor-like structure) a relatively small subset of a fractal

basin boundary is said to be "accessible" from a basin. However,

these accessible points play an important role in the dynamics,

and especially, in showing how the dynamics change as parameters

are varied. In [NY3] a numerical procedure is presented that

enables to produce trajectories lying in this accessible set on

the basin boundary, and it is proven that this procedure is valid

in certain hyperbolic systems.

[NYl] H.E. Nusse and J.A. Yorke. A procedure for finding
numerical trajectories on chaotic saddles. Physica D 26 (1989),
137-156.

[NY2] H.E. Nusse and J.A. Yorke. Analysis of a procedure for
finding numerical trajectories close to invariant chaotic saddle
hyperbolic sets. Ergodic Theory and Dynamical Systems 11 (1991),
189-208.

[NY3] H.E. Nusi djid J.A. YX.ck+. ft uAwiterical procedure for
finding accessible trajectories on basin boundaries. Preprint
Univ. of Maryland, December 1989. To appear in Nonlinearity
(1991).
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2B. MANIFOLDS. For years it has been known that in

two-dimensional dynamical systems the stable and unstable manifold

of a saddle fixed point can locally be approximated by a line

segment. Furthermore, the unstable (stable) manifold of the fixed

point is the union of the forward (backward) images of the local

stable (unstable) manifold which is a curve segment containing the

fixed point. In [YKY] a numerical procedure is described for

computing one-dimensional stable and unstable manifolds of fixed

points (periodic points) for diffeomorphisms of the n-dimensional

Euclidian space. In particular, it has been showed that a plot of

the computed curve coincides with the true curve within the

resolution of the display. A second procedure is described to

minimize the amount of computation of parts of the curve that lie

outside a region of interest. The method is applied to compute the

one-dimensional stable and unstable manifolds of some different

systems.

[YKY] Z. You, E.J. Kostelich, and J.A. Yorke: Calculating
stable and unstable manifolds. Preprint University of Maryland,
January 1991. To appear in International Journal of Bifurcation
and Chaos.

3. TOPOLOGICAL AND ANALYTICAL METHODS FOR DYNAMICAL SYSTEMS

3A. WADA. In dynamical systems examples are common in which two

or more attractors coexist, and in such cases the basin boundary

is nonempty. In [KeY] situations have been described in which

there are several basins of attraction (more than two) with the

Wada property, namely that each point that is on the boundary of

one basin of attraction is on the boundary of all basins of

attraction. It has been argued that such situations arise even in

studies of the forced damped pendulum.

[KeY] J. Kennedy and J.A. Yorke: Basins of Wada. Preprint
Unive-sity of Maryland, December 1990. To appear in Physica D.
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3B. DIMENSION. McDonald, Grebogi, Ott, and Yorke introduced the

uncertainty dimension -as a quantative measure for final state

sensitivity in a system. It was conjectured that the box-counting

dimension equals the uncertainty dimension for basin boundaries in

typical dynamical systems. This conjecture has been established in

[NY]; the main result is that the box-counting dimensicn, the

uncertainty dimension and the Hausdorff dimension are all equal

for the basin boundaries of one and two dimensional systems, which

are uniformly hyperbolic on their basin boundary.

[NY] H.E. Nusse and J.A. Yorke: The equality of fractal
dimension and uncertainty dimension for certain dynamical systems.
Preprint University of Maryland, December 1990. Submitted for
publication.

3C. EMBEDOLOGY. Mathematical formulations of the embedding

methods commonly used for the reconstruction of attractors from

data series are discussed. Embedding theorems, based on previous

work by H. Whitney and F. takens, are established for compact

subsets A of the k-dimensional Euclidian space Rk. If n is an

integer larger than twice the box-counting dimension of A, then

almost every map from Rk to R n, in the sense of prevalence, is

one-to-one on A. If A is a chaotic attractor of a typical

dynamical system, then the same is true for almost every
k ndelay-coordinate map from IR to In

[SYC] T. Sauer, J.A. Yorke and M. Casdagli: Embedology.
Preprint University of Maryland, January 1991. To appear in
Journal of Statistical Physics.

3D. ACCESSIBLE SADDLES. The paper [AY] (version 1988) was

described in the final scientific report of October 1988. However,

this paper was completely revised in 1989.

[AY] K.T. Alligood and J.A. Yorke: ACCESSIBLE SADDLES ON
FRACTAL BASIN BOUNDARIES. Preprint University of Maryland,
November 1989. To appear in Ergodic Theory and Dynamical Systems
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PART II.

PUBLICATIONS AND ABSTRACTS

H. E. Nusse and J. A. Yorke: A procedure for finding numerical

trajectories on chaotic saddles. Physica 36D (1989), 137-156

H. E. Nusse and J. A. Yorke: ANALYSIS OF A PROCEDURE FOR

FINDING NUMERICAL TRAJECTORIES CLOSE TO CHAOTIC SADDLE HYPERBOLIC

SETS. Ergodic Theory and Dynamical Systems 11 (1991), 189-208.

ABSTRACT. In dynamical systems examples ate common in which

there are regions containing chaotic sets that are not attractors,

e.g. systems with horseshoes have such regions. In such dynamical

systems one will observe chaotic transients. An important problem

is the "Dynamical Restraint Problem": Given a region that contains

a chaotic set but contains no attractor, find a chaotic trajectory

numerically that remains in the region for an arbitrarily long

period of time. We present two procedures ("PIM triple

procedures") for finding trajectories which stay extremely close

to such chaotic sets for arbitrarily long periods of time.

K.T. Alligood and J.A. Yorke: ACCESSIBLE SADDLES ON FRACTAL

BASIN BOUNDARIES. Preprint University of Maryland, November 1989.

To appear in Ergodic Theory and Dynamical Systems

ABSTRACT. For a homeomorphism of the plane, the basin of

attraction of a fixed point attractor is open, connected, and

simply-connected, and hence is homeomorphic to an open disk. The

basin boundary, however, need not to be homeomorphic to a circle.

When it is not, it can contain periodic orbits of infinitely many

different periods.

Certain points on the basin boundary are distinguished by being

accessible (by a path) from the interior of the basin. For an

orientation-presering homeomorphism, the accessible boundary

points have a well-defined rotation number. We prove that this

rotation number is rational if and only if there are accessible

periodic orbits. In particular, if the rotation number is the

reduced fraction p/q, then every accessible periodic orbit has

minimum period q. In addition, if the periodic points are

hyperbolic, then every accessible point is on the stable manifold

of an accessible periodic point.
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H. E. Nusse and J. A. Yorke: A NUMERICAL PROCEDURE FOR FINDING

ACCESSIBLE TRAJECTORIES ON BASIN BOUNDARIES. Preprint University

of Maryland, December 1989. To appear in Nonlinearity (1991)

ABSTRACT. In dynamical systems examples are common in which two

or more attractors coexist, and in such cases the basin boundary

is nonempty. The basin boundary is either smooth or fractal (that

is, it has a Cantor-like structure). When there are horseshoes in
the basin boundary, the basin boundary is fractal. A relatively

small subset of a fractal basin boundary is said to be

"accessible" from a basin. However, these accessible points play

an important role in the dynamics, and especially, in showing how

the dynamics change as parameters are varied. The purpose of this

paper is to present a numerical procedure that enables us to

produce trajectories lying in this accessible set on the basin

boundary, and we prove that this procedure is valid in certain

hyperbolic systems.

I. Kan and J.A. Yorke. ANTIMONOTONICITY: CONCURRENT CREATION

AND ANNIHILATION OF PERIODIC ORBITS. Bulletin (New Series) Amer.

Math. Soc. 23 (1990), 469-476.

I. Kan, H. Ko9ak, and J.A. Yorke. ANTIMONOTONICITY: CONCURRENT

CREATION AND ANNIHILATION OF PERIODIC ORBITS. Preprint University

of Maryland, August 1990. To appear in Annals of Math.

ABSTRACT. One-parameter families fA of diffeomorphisms of the

Euclidian plane are known to have a complicated bifurcation

pattern as A varies near certain values, namely where homoclinic

tangencies are created. In the first paper we argue and in the
second paper we establish, that the bifurcation pattern is much

more irregular than previously reported. Our results contrast with

the monotonicity result for the well-understood one-dimensional

family gA(x) = Ax(l-x), where it is known that periodic orbits are

created and never annihilated as A increases. We show that this

monotonicity in the creation of periodic orbits never occurs for

one-parameter family of area contracting three times continuously

differentiable diffeomorphisms of the Euclidian plane, excluding

certain technical degenerate cases where our analysis breaks down.

It has been shown that in each neighborhood of a parameter value
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at which a homoclinic tangency occurs, there are either infinitely

many parameter values at which periodic orbits are created or

infinitely many at which periodic orbits are annihilated. We show

that there are both infinitely many values at which periodic

orbits are created, and infinitely many at which periodic orbits

are annihilated. We call this phenomenon antimonotonicity.

J. Kennedy and J.A. Yorke: BASINS OF WADA. Preprint University

of Maryland, December 1990. To appear in Physica D.

ABSTRACT. We describe situations in which there are several

regions (more than two) with the Wada property, namely that each

point that is on the boundary of one region is on the boundary of

all. We argue that such situations arise even in studies of the

forced damped pendulum, where it is possible to have three

attractors coexisting, and the three basins of attraction have the

Wada property.

H.E. Nusse and J.A. Yorke: THE EQUALITY OF FRACTAL DIMENSION

AND UNCERTAINTY DIMENSION FOR CERTAIN DYNAMICAL SYSTEMS. Preprint

University of Maryland, December 1990. Submitted for publication.

ABSTRACT. McDonald, Grebogi, Ott, and Yorke introduced in the

paper "Fractal basin boundaries" (Physica D 17 (1985), 125-153)

the uncertainty dimension as a quantative measure for final state

sensitivity in a system. In that paper and in the paper "A

dynamical meaning of fractal dimension" (Transactions Amer. Math.

Soc. 292 (1985), 695-703) by Pelikan it was conjectured that the

box-counting dimension equals the uncertainty dimension for basin

boundaries in typical dynamical systems. In this paper our main

result is that the box-counting dimension, the uncertainty

dimension and the Hausdorff dimension are all equal for the basin

boundaries of one and two dimensional systems, which are uniformly

hyperbolic on their basin boundary. When the box-counting

dimension of the basin boundary is large, that is, near the

dimension of the phase space, this result implies that even a

large decrease in the uncertainty of the position of the initial

condition yields only a relatively small decrease in the

uncertainty of which basin that initial point is in.
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T. Sauer, J.A. Yorke and M. Casdagli: EMBEDOLOGY. Preprint

University of Maryland, January 1991. To appear in Journal of

Statistical Physics.

ABSTRACT. Mathematical formulations of the embedding methods

commonly used for the reconstruction of attractors from data

series are discussed. Embedding theorems, based on previous work

by H. Whitney and F. takens, are established for compact subsets A
kof the k-dimensional Euclidian space R . If n is an integer larger

than twice the box-counting dimension of A, then almost every map

from R k to n, in the sense of prevalence, is one-to-one on A, and

moreover is an embedding on smooth manifolds contained within A.

If A is a chaotic attractor of a typical dynamical system, then

the same is true for almost every delay-coordinate map from k to
Rn

These results are extended in two other directions. Similar

results are proved in the more general case of reconstructicns

which use moving averages of delay coordinates. Secondly,

information is given on the self-intersection set that exists when

n is less than or equal to twice the box-counting dimension of A.

Z. You, E.J. Kostelich, and J.A. Yorke: CALCULATING STABLE AND

UNSTABLE MANIFOLDS. Preprint University of Maryland, January 1991.

To appear in International Journal of Bifurcation and Chaos.

ABSTRACT. A numerical procedure is described for computing the

successive images of a curve under a diffeomorphism of the

n-dimensional Euclidian space. Given a tolerance c, we show how to

rigorously guarantee that each point in the computed curve lies no

further than a distance c from the "true" image curve. In

particular, if c is the distance between adjacent points (pixels)

on a computer screen, then a plot of the computed curve coincides

with the true curve within the resolution of the display. A second

procedure is described to minimize the amount of computation of

parts of the curve that lie outside a region of interest. We apply

the method to compute the one-dimensional stable and unstable

manifolds of the Hdnon and Ikeda maps, as well as a Poincare map

for the forced damped pendulum.
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